## Set Theory Explorer

(A u B) = union(A i B) = intersection

(A \ B) = difference

(c A) = complement

0 = empty set

U = universe

all-caps strings = sets

Challenges:

- Easy: Prove (B u (B i (A u B))) == B
- Hard: Prove ((A u C) - ((B - A) u (C - A))) == A

(A i B) = intersection

(A \ B) = difference

(c A) = complement

0 = empty set

U = universe

all-caps strings = sets

Challenges:

- Easy: Prove (B u (B i (A u B))) == B
- Hard: Prove ((A u C) - ((B - A) u (C - A))) == A

Blog, YouTube, Email me at "%s@%s.%s" % ("alexander_varga", "brown", "edu")